segunda-feira, 5 de novembro de 2018



TRANS-INTERMECÂNICA GRACELI  dO espalhamento de partículas (a ou b) pela matéria . e no
SISTEMA CATEGORIAL GRACELI. e que

VARIA E PRODUZ ENERGIAS, ESTRUTURAS, E FENÔMENOS COMO, e conforme:

 , tipos, níveis, potenciais, e tempo de ação, sobre:
temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.

e produz fenômenos como:
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

Matriz de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl




X

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Rutherford, a Beladona e a Partícula Alfa (a).
Quando o físico neozelandês Barão Ernest Rutherford (1871-1937; PNQ, 1908), iniciou em 1906 (Philosophical Magazine 11; 12, p. 166; 134), as pesquisas sobre o espalhamento das partículas a pela matéria, a contagem daquelas partículas era feita com os dedos e olhando para uma tela fluorescente através de um microscópio. A dificuldade nessa contagem era tão grande que alguns físicos nucleares dessa época chegavam a tomar beladona para dilatar a pupila de seus olhos. Contudo, em 1908 (Proceedings of the Royal Society of London A81, p. 141; 162), Rutherford e o físico alemão Hans (Johannes) Wilhelm Geiger (1882-1945) realizaram experiências nas quais desenvolveram uma técnica de contagem das partículas a que eram espalhadas pela matéria. Seu funcionamento era baseado no seguinte. Depois de espalhadas, as partículas a eram obrigadas a atravessar um gás sob alto campo elétrico e contido em um cilindro metálico com um condutor fino no eixo do mesmo. Nessa passagem, as a produziam uma pequena ionização (arrancavam elétrons) nas moléculas do gás. Os elétrons então arrancados, bem como os próprios íons resultantes, eram acelerados pelo campo elétrico, gerando uma corrente elétrica. É interessante ressaltar que, na segunda experiência, eles perceberam que as partículas a eram carregadas positivamente e apresentavam o dobro da carga do elétron. Tal observação indicava que tais partículas nada mais eram do que átomos de hélio (He). Essa observação foi enfatizada em um artigo que Rutherford e químico inglês Thomas Royds (1884-1955) escreveram em novembro de 1908, e publicado em 31 de dezembro de 1908 (Memoirs of the Manchester Literary and Philosophical Society 53, p. 1), e em 1909 (Philosophical Magazine 17, p. 281). Observe-se que esse contador foi aperfeiçoado por Geiger e pelo físico germano-norte-americano Erwin Wilhelm Mueller (1911-1977), em 1928 (Zeitschrift für Physik29, p. 839), e constitui o que hoje se conhece como o Contador Geiger-Mueller.Usando essa nova técnica de contagem, Geiger e o físico inglês Ernst Marsden (1889-1970), em 1909 (Proceedings of the Royal Society of London A82, p. 495), estudaram o espalhamento de um feixe de partículas a [oriundas do radônio (Rn)], através de uma lâmina fina de metal. Nesse estudo, eles observaram que do feixe, não muito bem colimado e contendo cerca de 8.000 daquelas partículas, apenas uma delas era refletida, ou seja, era espalhada num ângulo > 90o. Este tipo de espalhamento foi também comentado por Geiger, em 1910 (Proceedings of the Royal Society of London A83, p. 492). Por fim, em 1911 (Proceedings of the Manchester Literary and Philosophical Society 55, p. 18; Philosophical Magazine 5; 21, p. 576; 669), Rutherford interpretou os resultados das experiências de Geiger e Marsden, propondo seu célebre modelo planetário do átomo, decorrente da fórmula que deduziu para o espalhamento de partículas (a ou b) pela matéria - Fórmula do Espalhamento de Rutherford (em notação atual):

onde y expressa o número de partículas espalhadas sobre a unidade de área de um anteparo ("screen") colocado a uma distância r da fonte espalhadora e num ângulo f medido a partir da direção das partículas incidentes; n e t denotam, respectivamente, o número de átomos na unidade de volume da lâmina alvo e sua espessura; m, u e Q representam, respectivamente, a massa, a velocidade e o número total de partículas incidentes; Z a carga elétrica do núcleo do átomo que compõe a lâmina alvo; E a carga elétrica das partículas incidentes (E=2e, para a a e E=e , para a b); e e a carga elétrica do elétron. É interessante observar que, para a dedução dessa célebre fórmula, Rutherford contou com a colaboração de seu genro, o matemático inglês Ralph Howard Fowler (1889-1944).

TRANS-INTERMECÂNICA GRACELI  das descobertas do próton, do nêutron, da radioatividade artificial e da fissão nuclear. e no
SISTEMA CATEGORIAL GRACELI. e que

VARIA E PRODUZ ENERGIAS, ESTRUTURAS, E FENÔMENOS COMO, e conforme:

 , tipos, níveis, potenciais, e tempo de ação, sobre:
temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
trans-intermecânica de TUNELAMENTO no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.

e produz fenômenos como:
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

Matriz de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl



A "Alquimia" de Rutherford e as descobertas do próton, do nêutron, da radioatividade artificial e da fissão nuclear. .
Em entrevista à revista Ciência Hoje (Volume 4, jan/fev. 1983), o físico austríaco Guido Beck (1903-1988) conta um fato curioso que aconteceu com o físico inglês Lord Ernest Rutherford (1871-1937; PNQ, 1908). Estava o descobridor do núcleo atômico trabalhando em Manchester, na Inglaterra, por volta de 1918, no grande sonho dos alquimistas, que era, conforme todos sabemos, a transmutação dos elementos químicos, quando recebeu do Governo Inglês uma missão para ir a Paris e discutir com o físico francês Paul Langevin (1876-1946) um novo dispositivo de ultra-som que esse físico estava desenvolvendo, com o propósito de detectar submarinos, já que a Inglaterra e a França haviam se aliado contra a Alemanha, por ocasião da Primeira Guerra Mundial (1914-1918). Rutherford declinou do convite alegando que não tinha tempo para isso. Aí, então, o Governo Inglês mandou uma ordem de serviço para Rutherford e este respondeu da seguinte maneira: Agora não posso, vou mais tarde, pois se rompo o átomo isso será mais importante do que a vossa guerra. Hoje, todos nós conhecemos que o rompimento (fissão) do átomo só foi possível graças às experiências que Rutherford estava realizando naquela época. Uma transmutação efetiva foi apresentada por ele na Philosophical Magazine 37, pgs. 537; 571; 581 (1919), ao descrever uma reação nuclear que realizara, na qual uma partícula  () ao atravessar um cilindro contendo gases, principalmente nitrogênio (), havia transmutado esse elemento químico em oxigênio () com a emissão de um próton (), segundo a seguinte reação nuclear (considerada como a descoberta do próton):
Como essa reação transmutou o nitrogênio no oxigênio, Rutherford é considerado o "primeiro alquimista".
Experiências desse tipo realizadas por Rutherford, isto é, colisão de partículas  com elementos químicos, foram realizadas na década de 1930, na Inglaterra, pelo físico inglês James Chadwick (1891-1974; PNF, 1935), e em França, pelo casal Joliot-Curie [Iréne (1897-1956; PNQ, 1935) e Frédéric (1900-1958; PNQ, 1935)]. A experiência realizada por Chadwick, em 1932 (Proceedings of the Royal Society of LondonA136, pgs. 696; 735 e na Nature 129, p. 312), no qual bombardeou o boro () com a partícula  e obteve o nitrogênio (), é considerada como a da descoberta do nêutron ():

Por sua vez, a experiência realizada, em 1934 (Comptes Rendus de l´Academie des Sciences de Paris 198, pgs. 254; 559 e na Nature 133, p. 201, pelo casal Joliot-Curie, no qual bombardeou o alumínio () com a partícula  e obteve o primeiro isótopo radioativo, o fósforo (), é considerada como a da descoberta da radioatividade artificial:

É oportuno registrar que, com os nêutrons obtidos com reações desse tipo, o físico italiano Enrico Fermi (1901-1954; PNF, 1938) e sua equipe da Universidade Roma, os físicos italianos Franco Rama Dino Rasetti (1901-2001), Edoardo Amaldi (1908-1989), Emílio Gino Segrè (1905-1989; PNF, 1959) e o químico também italiano Oscar D´Agostino (1901- ), ainda em 1934 (Nature 133, p. 898), produziram a primeira fissão nuclear, sem, contudo, entendê-la como tal, ao bombardear o elemento químico urânio () com nêutron. Eles, contudo, pensavam que haviam obtido um novo elemento transurânico, o qual Fermi chegou a denominar de urânio-X. Registre-se que Fermi recebeu pressão do governo fascista italiano para denominar esse novo elemento químico de littorio, uma vez que os "littorios" eram oficiais romanos que portavam os fascios (feixes) como insígnia.
Em 1938 (Naturwissenschaften 26, p. 475), uma nova reação de fissão nuclear, também não entendida dessa maneira, foi realizada pelos químicos alemães Otto Hahn (1879-1968; PNQ, 1944) e Fritz Strassmann (1902-1980), e a física sueco-austríaca Lise Meitner (1878-1968), ao bombardearem o urânio com nêutrons lentos. Além dos resultados já conhecidos, um deles, no entanto, era aparentemente um absurdo, qual seja, o da presença do bário (Ba), em vez do rádio (Ra), como um dos produtos finais da reação. Isso indicava que o nêutron poderia induzir uma partição do átomo de urânio em dois átomos de massas comparáveis. Essa partição foi interpretada por Lise e seu sobrinho, o físico austro-alemão Otto Robert Frisch (1904-1979), em 1939 (Nature 143, pgs. 239; 471), como sendo uma fissão nuclear, como, por exemplo, ocorre na seguinte reação (em notação atual):

onde os elementos de desintegração são o xenônio () e o estrôncio (), além da radiação  e mais energia liberada de 200 MeV . Registre-se que o nome fissão nuclear foi sugerido a Frisch pelo bioquímico norte-americano William A. Arnold, em analogia com o termo utilizado na divisão celular de uma bactéria. Registre-se, também, que essa fonte de energia liberada pela fissão nuclear, foi rejeitada por Rutherford, por volta de 1933, quando afirmou: Quem quer que espere obter uma fonte de energia a partir da transmutação de átomos está sonhando. Rutherford, ao morrer em 1937, não viu que essa sua frase estava completamente errada, pois, em 02 de dezembro de 1942, Fermi e uma equipe de 42 cientistas da Universidade de Chicago, construíram a primeira pilha atômica por intermédio da fissão nuclear controlada de um isótopo do urânio, o U-235.